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Abstract
A method to calculate the algebraic entropy of a mapping, which can be lifted
to an isomorphism of a suitable rational surface (the space of initial values),
is presented. It is shown that the degree of the nth iterate of such a mapping
is given by its action on the Picard group of the space of initial values. It is
also shown by construction that the degree of the nth iterate of every Painlevé
equation in Sakai’s list is O(n2) and therefore its algebraic entropy is zero.

PACS numbers: 02.40.−k, 02.20.−a, 02.30.Gp

1. Introduction

The notion of algebraic entropy was introduced by Hietarinta and Viallet [1] in order to test
the degree of complexity of successive iterations of a rational mapping. The algebraic entropy
is defined as s := limn→∞ log(dn)/n where dn is the degree of the nth iterate. This notion is
linked to Arnold’s complexity since the degree of a mapping gives the intersection number of the
image of a line and a hyperplane. While the degree grows exponentially for a generic mapping,
it was shown that it only grows polynomially for a large class of integrable mappings [1–3].
In particular, the case of some discrete Painlevè equations is studied by Ohta et al [4].

Let ϕi be a birational mapping of P
2 or P

1 × P
1. A sequence of rational surfaces Xi is (or

Xi themselves are) called the space of initial values for the sequence of ϕi if each ϕi is lifted
to an isomorphism, i.e. bi-holomorphic mapping, from Xi to Xi+1 [5–7]. Here, the mapping
ϕ′ is called a mapping lifted from the mapping ϕ if ϕ′ coincides with ϕ at any point where ϕ is
defined. Such a mapping induces an action on the Picard group of its space of initial values.
Here, the Picard group of a rational surface X is the group of isomorphism classes of invertible
sheaves on X and it is isomorphic to the group of linear equivalence classes of divisors on X.

In this paper we present some basic formulae to calculate the degree of the nth iterate of
the sequence of rational mappings, which is proposed in the previous paper by the author [6]
for birational mappings with the space of initial values. In the case where the mappings are
birational and have the space of initial values the calculation reduces to the calculation of
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the power of some matrix. This method is essentially the projection of the formula which
has been proposed [8, 9] for automorphisms of rational surfaces to the formula for birational
mappings on a minimal surface (or C

2). We also show examples of calculation and simplify
the method by considering invariant sublattices. We also apply our method to the discrete
Painlevé equations in Sakai’s list [10] and prove that for all of them the degrees grow at most
in the order n2. This proof is based on their construction and the corresponding root systems.

The discrete Painlevé equations have been found by many authors [11,12] and have been
extensively studied. Recently it was shown by Sakai [10] that all (from the point of view of
symmetries) of these are obtained by studying rational surfaces in connection with the extended
affine Weyl groups.

Surfaces obtained by successive blow-ups of P
2 or P

1 × P
1 have been studied by several

authors by means of connections between the Weyl groups and the groups of Cremona
isometries on the Picard group of the surfaces [13–15]. Here, a Cremona isometry is an
isomorphism of the Picard group such that (a) it preserves the intersection number of any pair
of divisors, (b) it preserves the canonical divisor KX and (c) it leaves the set of effective classes
of divisors invariant. In the case where nine points (in the case of P

2, eight points in the case of
P

1 × P
1) are blown up, if the points are in a general position the group of Cremona isometries

becomes isomorphic with an extension of the Weyl group of type E
(1)
8 . When the nine points are

not in a general position, the classification of connections between the groups of Cremona
isometries and the extended affine Weyl groups was first studied by Looijenga [16] and more
generally by Sakai. Birational (bi-meromorphic) mappings on P

2 (or P
1 × P

1) are obtained
by interchanging the procedure of blow-downs. Discrete Painlevé equations are recovered as
the birational mappings corresponding to the translations of the affine Weyl groups.

In section 2, we show a method to calculate the degree of the nth iterate. Considering
the intersection numbers of divisors it is shown that for general rational mappings the degree
is given by the action of the mapping on the Picard group. In the case where the mapping is
birational and has the space of initial values, i.e. it is lifted to isomorphism between certain
surfaces, it is given by the nth power of the corresponding matrix.

In section 3, we present an example of calculation. We apply our method to the mapping
which was found by Hietarinta and Viallet [1] and whose space of initial values is obtained by
14 blow-ups from P

1 × P
1 [6]. We simplify the calculation using the root systems associated

with the symmetries of their space of initial values.
In section 4, applying our method for discrete Painlevé equations, we show by using the

construction that the degrees of the nth iterate are O(n2).

2. Algebraic entropy and intersection numbers

This section is devoted to discussing the relation between the degree of a (bi-)rational mapping
and the corresponding surfaces by using the basic theory of algebraic geometry. We show
a method to calculate the degree of the nth iterate (where n is finite) by using the theory of
intersection numbers for general (bi-)rational mappings. This method is essentially based on
the elimination of indeterminacy and the projection formula. Notice that we have to calculate
successive elimination to obtain the sequence of surfaces in this method and therefore this
method does not give a formula for the degree of the mapping as n → ∞ immediately. Next
we adapt this method to birational mappings which have the space of initial values and show
that the degree of mapping is given by the nth power of a matrix.

Let ϕi : (x, y) ∈ C
2 �→ (x, y) ∈ C

2 be a rational mapping for each i = 0, 1, 2, . . . .
We can relate a mapping ϕ′

i : (X : Y : Z) ∈ P
2 �→ (X : Y : Z) = (fi(X, Y, Z) :

gi(X, Y, Z) : hi(X, Y, Z)) ∈ P
2 to the mapping ϕi by using the relations x = X/Z, y = Y/Z
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and x = X/Z, y = Y /Z and by reducing to a common denominator. We denote ϕ′n :=
ϕ′

n−1 ◦ · · · ◦ ϕ′
1 ◦ ϕ′

0 by (Xn : Yn : Zn) = (f n(X0, Y0, Z0) : gn(X0, Y0, Z0) : hn(X0, Y0, Z0))

where f n, gn, hn are polynomials with the same degree and should be simplified if possible.
It is easily shown that ϕ′

n−1 ◦ · · · ◦ ϕ′
1 ◦ ϕ′

0 = (ϕn−1 ◦ · · · ◦ ϕ1 ◦ ϕ0)′. We denote the coordinates
X, Y, Z by x, y, z and ϕ′ by ϕ for simplicity and avoiding confusion of notations. The degree
of the sequence of mappings is defined by the degree of polynomials and the algebraic entropy
h of {ϕi} is defined by

h = lim
n→∞

1

n
log deg(ϕn)

if the limit exists.
Let {ϕi} be a sequence of rational mappings on P

2. First, blowing up P
2, we can construct

the surfaces Y1,i such that each mapping ϕi can be lifted to a regular mapping from Y1,i to
Y0,i+1 := P

2, where the mapping ψ ′ is called a mapping lifted from the mapping ψ if ψ ′

coincides with ψ at any point where ψ is defined. In our case ϕi can also be lifted to a rational
mapping from Y1,i to Y1,i+1 and hence similarly ϕi is lifted to a rational mapping from Y2,i to
Y2,i+1. Continuing this operation we obtain surfaces Yk,i for k, i = 0, 1, 2, . . . such that ϕi

is lifted to a rational mapping from Yk,i to Yk,i+1 and is also lifted to a regular mapping from
Yk+1,i to Yk,i+1.

Let a, b, c be complex numbers. The total transform of the line axi+1 + byi+1 + czi+1 = 0
in Yk,i+1 coincides with the proper transform of the line for generic a, b, c and we denote it by
L. We denote the linear equivalence class of the divisor of a line in P

2 by E . The pre-image
of L by ϕi : Yk+1,i → Yk,i+1 is the total transform of

afi(xi, yi, zi) + bgi(xi, yi, zi) + chi(xi, yi, zi) = 0

in Yk+1,i . We denote the action of the pull-back of ϕi from the Picard group of Yk,i+1 to that of
Yk+1,i by ϕ∗

i .
By Bézout’s theorem the degree of fi coincides with the intersection number of ϕ∗

i (E)

and a generic line in P
2. Notice that the intersection points of ϕ∗

i (E) and a generic line are not
blown up. Hence we have the formula

deg(ϕi) = ϕ∗
i (E) · E (1)

where · denotes the intersection number of a pair of divisors.
Similarly for the mapping ϕn : Yn+k,0 → Yk,n we have the formula

deg(ϕn) = (ϕn)∗(E) · E (2)

where (ϕn)∗ denotes the action of the pull-back of ϕn from the Picard group of Yk,n to that of
Yk+n,0.

Remark. Let X be a surface obtained by blowing up P
2 L times. We write the Picard group

of X as Pic(X). The Picard group Pic(X) is a Z-module in the form

ZE +
L∑

l=1

ZEl

where El denotes the linear equivalence class of the total transform of the point of the lth
blow-up. The action (ϕi)

∗ is a linear transformation of the lattices. The intersection numbers
are given by the intersection form

E · E = 1 E · El = 0 El · Em = δl,m (3)

where δi,j is 1 if i = j and 0 if i �= j , and the intersection numbers of any pairs of divisors are
given by their linear combinations. Hence the calculation of the degree reduces to a calculation
of linear algebra in principle. The remaining difficulty is the calculation of the sequence of
surfaces as n → ∞.
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Next we present another calculation for general birational mappings by using the inverse
mappings. Let {ϕi} be a sequence of birational mappings. Similar to the forward mappings we
can construct surfaces Zk,i for k, i = 0, 1, 2, . . . such that ϕ−1

i is lifted to a birational mapping
from Zk,i+1 to Zk,i and is also lifted to a birational regular mapping from Zk+1,i+1 to Zk,i .

Let a, b, c be complex numbers. The total transform of the line axi + byi + czi = 0 in Zk,i

coincides with the proper transform of the line for generic a, b, c and we denote it by L. The line
L is written by the parameter s : t ∈ P

1 as (xi : yi : zi) = (cs : ct : −as −bt). The pre-image
of L by ϕ−1

i : Zk+1,i+1 → Zk,i is the total transform of the curve (fi(cs : ct : −as −bt), gi, hi)

in Zk+1,i+1. We denote the action of the pull-back of ϕ−1
i from the Picard group of Zk,i to that

of Zk+1,i+1 by (ϕ−1
i )∗.

The degree of ϕn((cs : ct : −as − bt)) as polynomials of s : t coincides with the degree
of (fi(cs : ct : −as − bt), gi, hi). Moreover since the intersection number of (ϕ−1

i )∗(E) and
a generic line in P

2 is given by the equation

(a linear combination of fi(cs : ct : −as − bt), gi and hi) = 0

in {(s : t) ∈ P
1}, it coincides with the degree of ϕi . Hence we have the formula

deg(ϕ−1
i ) = (ϕ−1

i )∗(E) · E . (4)

Similarly for the mapping ϕ−n := (ϕn)−1 : Zn+k,n → Zk,0, we have the formula

deg(ϕn) = (ϕ−n)∗(E) · E (5)

where (ϕ−n)∗ denotes the action of the pull-back of ϕ−n from the Picard group of Zk,0 to that
of Zk+n,n.

As a corollary of the formulae (1) and (5) (or (2) and (4)) we have

deg(ϕn) = deg(ϕ−n). (6)

Next, we consider the case where the mappings ϕi have the space of initial values. Let
{Xi} be a sequence of surfaces obtained by blowing up P

2 such that each ϕi is lifted to an
isomorphism from Xi to Xi+1. Similar to the birational case, we have the formula

deg(ϕi) = ϕ∗
i (E) · E = (ϕ−1

i )∗(E) · E
deg(ϕn) = (ϕn)∗(E) · E = (ϕ−n)∗(E) · E (7)

where (ϕi)
∗ denotes the action from Pic(Xi+1) to Pic(Xi) and (ϕ−1

i )∗ denotes the action from
Pic(Xi) to Pic(Xi+1) and so on. Here the Picard group of Xi is isomorphic to each other, hence
the action of (ϕn)∗ and (ϕ−n)∗ are linear isomorphisms on Z

K+1, where K is the number of
blow-ups. In the case where each ϕ∗

i is the same transformation with respect to i, as in the case
of the discrete Painlevé equations, (ϕn)∗ (= (ϕn

0 )∗) is the power of the corresponding matrix,
so we can observe the behaviour of the degree of ϕn as n → ∞.

Consequently we have the following results.

Proposition 2.1.

(i) Let each ϕi be a rational mapping on P
2; the formula

deg(ϕn) = (ϕn)∗(E) · E (8)

holds, where ϕn is considered to be a regular mapping from Yn+k,0 to Yk,n.
(ii) Let each ϕi be a birational mapping on P

2; the formula

deg(ϕn) = deg(ϕ−n) = (ϕn)∗(E) · E = (ϕ−n)∗(E) · E (9)

holds, where ϕn and ϕ−n are considered to be a birational regular mapping from Yn+k,0

to Yk,n and that from Zn+k,n to Zk,0, respectively.
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(iii) Let each ϕi be a birational mapping such that they have the space of initial values;
the formula (9) also holds, where ϕn and ϕ−n are considered to be an isomorphism
from X0 to Xn and one from Xn to X0 respectively. Moreover in the case where
ϕ∗ : Pic(Xi+1) → Pic(Xi) is the same transformation with respect to i, each (ϕn)∗

(= (ϕ∗
0 )n) and (ϕ−n)∗ (= ((ϕ−1

0 )∗)n) is the power of the corresponding matrix respectively.

Next, for the sake of convenience, we present the corresponding formulae in the case
where ϕi is considered to be a rational mapping on P

1 × P
1. (In this paper the definition of

degree is slightly modified from [6].)
We denote the degree of a polynomial on C : f (t) = ∑

m at t
m by deg f (t) (= degt f (t)).

The degree of a rational function on P
1, which is written as P (x) = f (x)/g(x) on one of the

local coordinates, where f (x) and g(x) are polynomials, is defined by

deg(P ) = max{deg f (x), deg g(x)}.
The degree of a rational function on P

1 × P
1, which is written as P (x, y) = f (x, y)/g(x, y)

on one of the local coordinates, where f (x, y) and g(x, y) are polynomials, is defined by

deg(P ) = degx P (x, y) + degy P (x, y).

The degree of a mapping ϕ : P
1 ×P

1 → P
1 ×P

1, (x, y) �→ (P (x, y), Q(x, y)), where P (x, y)

and Q(x, y) are rational functions, is defined by

deg(ϕ) = max{deg P (x, y), deg Q(x, y)}
and similarly degt (ϕ) is defined by the degree about t .

Let each ϕi : (x, y) �→ (x, y) = (Pi(x, y), Qi(x, y)), where Pi, Qi are rational
functions, be a rational mapping on P

1 × P
1. We denote ϕn := ϕn−1 ◦ · · · ◦ ϕ1 ◦ ϕ0 by

(xn, yn)= (P n(x0, y0), Qn(x0, y0)). The algebraic entropy h of {ϕi} is defined by

h = lim
n→∞

1

n
log deg(ϕn)

if the limit exists. It is easily shown that this algebraic entropy coincides with that in the P
2

case.
Let {ϕi} be a sequence of rational mappings on P

1 × P
1. Let Yk,i be obtained by blowing

up such that ϕi is lifted to a rational mapping from Yk,i to Yk,i+1 and is also lifted to a regular
mapping from Yk+1,i to Yk,i+1 as in the P

2 case. The total transform of the line xi+1 = d in
Yk,i+1 coincides with the proper transform of the line for generic d and we denote it by Lx .
We denote the linear equivalence class of the divisor of x = d in P

1 × P
1 by H0 and that of

y = d ′ by H1.
The pre-image of Lx by ϕi : Yk+1,i → Yk,i+1 is the total transform of

Pi(xi, yi) = d

in Yk+1,i . Since the intersection number of ϕ∗
i (H0) and the line Ly : yi = e in P

1 × P
1 is given

by the number of solutions of the equation

Pi(xi, e) = d

it coincides with degxi
Pi . Hence we have the formula

degxi
(Pi) = (ϕi)

∗(H0) · H1

where we use the fact that the linear equivalence class of the divisor of Ly is H1 and the fact
that the intersection points are not blown up for generic Ly . Analogously, we have the formula
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degyi
(Pi) = (ϕi)

∗(H0) · H0

degxi
(Qi) = (ϕi)

∗(H1) · H1

degyi
(Qi) = (ϕi)

∗(H1) · H0

and the formulae

degx P n(x, y) = (ϕn)∗(H0) · H1

degy P n(x, y) = (ϕn)∗(H0) · H0

degx Qn(x, y) = (ϕn)∗(H1) · H1

degy Qn(x, y) = (ϕn)∗(H1) · H0.

Remark. Let X be a surface obtained by blowing up P
1 × P

1 L times. The Picard group
Pic(X) is a Z-module in the form

ZH0 + ZH1 +
L∑

l=1

ZEl.

The intersection form is

Hi · Hj = 1 − δi,j El · Em = −δl,m Hi · El = 0.

Next we consider the case where each ϕi is a birational mapping on P
1 × P

1. Let Zj,i

be obtained by blowing up such that ϕ−1
i is lifted to a birational mapping from Zk,i+1 to Zk,i

and is also lifted to a birational regular mapping from Zk+1,i+1 to Zk,i as in the P
2 case. We

denote the line yi = e in Zk,i by Ly . The line Ly is written by the parameter t ∈ C as
(xi, yi) = (t, e). The pre-image of Ly by ϕ−1

i : Zk+1,i+1 → Zk,i is the total transform of
the curve (Pi(t, e), Qi(t, e)) in Zk+1,i+1 and degt Pi(t, e) coincides with degxi

Pi . Moreover
degt Pi(t, e) coincides with the intersection number of (ϕ−1

i )∗(Ly) and a line Lx : xi+1 = d in
P

1 × P
1. Hence we have the formulae

degxi
(Pi) = (ϕ−1

i )∗(H1) · H0

degyi
(Pi) = (ϕ−1

i )∗(H0) · H0

degxi
(Qi) = (ϕ−1

i )∗(H1) · H1

degyi
(Qi) = (ϕ−1

i )∗(H0) · H1

and the formulae

degx P n(x, y) = (ϕ−n)∗(H1) · H0

degy P n(x, y) = (ϕ−n)∗(H0) · H0

degx Qn(x, y) = (ϕ−n)∗(H1) · H1

degy Qn(x, y) = (ϕ−n)∗(H0) · H1.

In the case where the ϕi have the space of initial values, the statement corresponding
to (iii) in proposition 2.1 also holds.

Consequently we have the following formulae:

deg P n(x, y) = (ϕn)∗(H0) · (H0 + H1) = (ϕ−n)∗(H0 + H1) · H0

deg Qn(x, y) = (ϕn)∗(H1) · (H0 + H1) = (ϕ−n)∗(H0 + H1) · H1

where the left-hand equalities hold for general rational mappings and the right-hand equalities
hold for birational mappings.
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3. Examples and simplification

In this section we present two examples. The first one is the birational mapping found by
Hietarinta and Viallet [1] (we denote it as the HV equation in this paper). It is known that its
algebraic entropy is positive and that it is associated with a root system of indefinite type. We
show that the algebraic entropy can be computed by using the action on the root lattice. The
second example is the second discrete Painlevé equation, dPII. We present that the order of its
nth iterate is n2. It is known that dPII is associated with the root system of affine type (A(1)

2 ),
but we see that the algebraic entropy cannot be computed only by the action on the root lattice
in this case.

3.1. Hietarinta–Viallet equation

We consider the HV equation written as follows:

ϕ : P
1 × P

1 → P
1 × P

1(
xn

yn

)
�→
(

xn+1

yn+1

)
=
(

yn

−xn + yn + a/y2
n

)
(10)

where a ∈ C is a nonzero constant. It is known that the algebraic entropy of the HV equation
ϕ is equal to log(3 +

√
5)/2. Here we shall recover the algebraic entropy of the HV equation

by using the theory of intersection numbers.
By the change of variables x = X/Z, y = Y/Z, this mapping reduces to the mapping

ϕ : P
2 → P

2

ϕ : (X, Y, Z) �→ (Y 3, −XY 2 + Y 3 + aZ3, Y 2Z).

The HV equation can be lifted to an automorphism of a rational surface X obtained by
15 successive blow-ups from P

2. Hence its Picard group is

Pic(X) = ZE + ZE1 + ZE2 + · · · + ZE14

where total transforms of the points of blow-ups are as follows (figure 1):

E1 : (Y/X, Z/X) = (0, 0)

E2 : (u1, v1) := (Z/X, Y/Z) = (0, 0)

E3 : (u2, v2) := (u1/v1, v1) = (0, 0)

E4 : (u3, v3) := (u2, v2/u2) = (0, a)

E5 : (u4, v4) := (u3, (v3 − a)/u3) = (0, 0)

E6 : (Z/Y, X/Y ) = (0, 0)

E7 : (u6, v6) := (Z/Y, X/Z) = (0, 0)

E8 : (u7, v7) := (u6/v6, u6) = (0, 0)

E9 : (u8, v8) := (u7, v7/v7) = (0, a)

E10 : (u9, v9) := (u8, (v8 − a)/u8) = (0, 0)

E11 : (Z/X, Y/X) = (0, 1)

E12 : (u11, v11) := (Z/X, (Y − X)/Z) = (0, 0)

E13 : (u12, v12) := (u11/v11, v11) = (0, 0)

E14 : (u13, v13) := (u12, v12/u12) = (0, a)

E15 : (u14, v14) := (u13, (v13 − a)/u13) = (0, 0).
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Figure 1. Proper transformation of the HV
equation.

The action of ϕ (= (ϕ−1)∗) on the Picard group is

ϕ :




E
E1

E2, E3

E4, E5

E6, E7, E8, E9, E10

E11, E12, E13, E14, E15




�→




3E − 2E6 − E7 − E8 − E9 − E10

2E − E6 − E7 − E8 − E9 − E10

E − E6 − E10, E − E6 − E9

E − E6 − E8, E − E6 − E7

E11, E12, E13, E14, E15

E1, E2, E3, E4, E5




(11)

(this table means E = 3E −2E6 −E7 −E8 −E9 −E10, E1 = 2E −E6 −E7 −E8 −E9 −E10,
E2 = E − E6 − E10 and so on) and their linear combinations.

Notice that (11) means a change of bases. Actually by fixing the basis of Pic(X) as
{E, E1, E2, . . . , E15}, this action can be expressed by the corresponding matrix as the action
from the left-hand side on the space of coefficients of basis.

The action of ϕ on Pic(X) is given by (11). Hence the algebraic entropy of the HV equation,
limn→∞ 1

n
log ϕn(E) · E , can be shown to be equal to (by diagonalization of the corresponding

matrix of (11))

log max{| eigenvalues of (11)|} = log
3 +

√
5

2
.

On the level of the mapping itself, the degrees can be calculated as follows:

(X, Y, Z)
ϕ′

−−−−→ (Y 3, −XY 2 + Y 3 + aZ3, Y 2Z)
ϕ′

−−−−→ deg 9
ϕ′

−−−−→ deg 27
ϕ′

−−−−→ deg 73
ϕ′

−−−−→ · · · . (12)

On the other hand, the intersection numbers can be calculated by (11) as follows:

E ϕ−−−−→ 3E − 2E6 − E7 − E8 − E9 − E10
ϕ−−−−→ 9E + · · · ϕ−−−−→ 27E + · · · ϕ−−−−→ 73E + · · ·
ϕ−−−−→ · · ·

and hence ϕn(E) · E actually coincides with (12).
Next we consider simplification of our method. The anti-canonical divisor −KX can be

reduced uniquely [7] to prime divisors as

D0 + 2D1 + D2 + D3 + 2D4 + D5 + 3D6 + D7 + 2D8 + D9 + 2D10 + 2D11 + 2D12
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where

D0 = E2 − E3 D1 = E3 − E4 D2 = E4 − E5 D3 = E7 − E8 D4 = E8 − E9

D5 = E9 − E10 D6 = E − E1 − E6 − E11 D7 = E12 − E13 D8 = E13 − E14

D9 = E14 − E15 D10 = E1 − E2 − E3 D11 = E6 − E7 − E8 D12 = E11 − E12 − E13.

We denote the sub-lattice of the Picard group
∑12

i=0 ZDi as 〈Di〉. Let 〈αi〉 be the orthogonal
(with respect to the intersection form) complement of 〈Di〉 and let {α1, α2, α3} be its basis.
Notice that ϕ preserves 〈Di〉 and 〈αi〉 because its action on the Picard group is a Cremona
isometry (the action preserves the intersection numbers).

The mapping (11) is an expression of the action ϕ on Pic(X) by the basis {E, E1, . . . , E15},
but {D0, D1, . . . , D12, α1, α2, α3} is a better basis for calculation of the degree of ϕn (we may
consider Pic(X) to be a vector space on C instead of a Z-module for this purpose). The reason
is that 〈Di〉 and 〈αi〉 are eigenspaces of ϕ and independent of each other, and moreover the
action of ϕ on 〈Di〉 is just a permutation. Hence it is enough to investigate the action on 〈αi〉
in order to know the level of growth of deg(ϕn).

Actually, by taking a basis of 〈αi〉 as

α1 = 2E − 2E1 − E2 − E3 − E4 − E5

α2 = 2E − 2E6 − E7 − E8 − E9 − E10

α3 = 2E − 2E11 − E12 − E13 − E14 − E15

(the fact is, this basis is the basis of the root system by regarding the 〈αi〉 and intersection
form as the root lattice and the bilinear form respectively) and writing an element of 〈αi〉 as
r1α1 + r2α2 + r3α3, the action of ϕ on 〈αi〉 is expressed as(

r1

r2

r2

)
=
( 0 0 1

−1 2 2
0 1 0

)(
r1

r2

r2

)
(13)

and the absolute values of its eigenvalues are 1, (3 ± √
5)/2.

Remark. The non-autonomous version is as follows:

ϕ : (x, y; a1, a2, a3, a4, a5, a6, a7) �→
(

y, −x + y + a5 +
a1

y2
+

a2

a1y
; a6, −a7 + 2a2

5a6

+
2a2a6

a1
, a1, a2, −a5, a3, a4 + 2a3a2

5 − 2a2a3

a1

)
(14)

where ai ∈ C and a1, a3, a6 are nonzero [6]. In this case the coefficients of E and Ei do not
change and therefore the degrees and the algebraic entropy do not change, since its action on
the Picard group is identical to the action of the original autonomous version.

3.2. The second discrete Painlevé equation

We consider the second discrete Painlevé equation [10], dPII:

ϕ : (x, y; a1, a2, a0) �→ (x̄, ȳ; ā1, ā2, ā0)

=
(

−x − y +
a0

y
+ s, −y − x̄ +

a2 − λ

x̄
+ s : a1, a2 − λ, a0 + λ

)
where λ = a1 + a2 + a0. The mapping ϕ is written as ϕ = ψ2, where ψ is defined as

ψ : (x, y; a1, a2, a0) �→ (x̄, ȳ; ā1, ā2, ā0)

=
(

y, −x − y +
a0

y
+ s : a0 + a2, −a0, a0 + a1

)
.
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Figure 2. Proper transformation of dPII.

We define the corresponding surfaces Xi (= Xa1,a2,a0 ) obtained by nine successive blow-
ups from P

2 as follows (figure 2):

E1 : (Y/X, Z/X) = (0, 0)

E2 : (u1, v1) := (Z/X, Y/Z) = (0, 0)

E3 : (u2, v2) := (u1, v1/u1) = (0, a0)

E4 : (Z/Y, X/Y ) = (0, 0)

E5 : (u4, v4) := (Z/Y, X/Z) = (0, 0)

E6 : (u5, v5) := (u4, v4/u4) = (0, −a2)

E7 : (Z/X, Y/X) = (0, −1)

E8 : (u7, v7) := (Z/X, (X + Y )/Z) = (0, s)

E9 : (u8, v8) := (u7, (v7 − s)/u7) = (0, a1).

The action of ψ , (= (ψ−1)∗), on the Picard group is

ψ :


 E, E1

E2, E3,

E4, E5, E6, E7, E8, E9


 �→


 2E − E4 − E5 − E6, E − E5 − E6

E − E4 − E6, E − E4 − E5

E7, E8, E9, E1, E2, E3


 .

(15)

The Jordan normal form of ψ consists of the cells{
1, 1, −1, eπ

√−1/6, eπ
√−1/6, eπ

√−1/3, eπ
√−1/3,

( 1 1 0
0 1 1
0 0 1

)}
.

Hence the order of the degree of the nth iterate is n2.
On the other hand the anti-canonical divisor −KX can be reduced to prime divisors as

D1 + 2D2 + 3D3 + 2D4 + D5 + 2D6 + D0

where

D1 = E2 − E3 D2 = E1 − E2 D3 = E − E1 − E4 − E5

D4 = E4 − E5 D5 = E5 − E6 D6 = E7 − E8 D0 = E8 − E9.

The action of ψ on 〈Di〉 is also just a permutation. The basis of the orthogonal complement
of 〈Di〉 is

α1 = E − E7 − E8 − E9

α2 = E − E1 − E2 − E3

α0 = E − E4 − E5 − E6.
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The action of ψ on 〈αi〉 is

(α1, α2, α0) �→ (α0 + α2, −α0, α0 + α1).

The Jordan normal form consists of the cells{
−1,

(
1 1
0 1

)}
.

Hence the coefficient of αi of the nth iterate is of the order of n. Therefore the order of the
degree of ψ cannot be observed only by the action on the root lattice in this case. The reason
is that 〈αi〉 and 〈Di〉 are not independent. This is the point of the proof in the next section.

4. The growth of degree of discrete Painlevé equations

In this section we prove that the degree of the nth iterate for every discrete Painlevé equation
is O(n2). The proof is based on the construction and the corresponding root systems.

It is shown by Sakai [10] that the discrete Painlevé equations can be obtained by the
following method.

Let X be a rational surface obtained by blow-ups from P
2 such that its anti-canonical divisor

−KX (= 3E −E1 −· · ·−E9) is uniquely decomposed in prime divisors as −KX = ∑I
i=1 miDi

and satisfies KX · Di = 0 for all i. This implies that KX · KX = 0 and therefore X is obtained
by nine blow-up points from P

2 and hence rankPic(X) = 10. One can classify such surfaces
according to the type (denoted by R) of Dynkin diagram formed by the Di (the lattice of R is
a sub-lattice of the lattice of E

(1)
8 ).

The Cremona isometries of X preserve the sub-lattice 〈Di〉 and its orthogonal sub-lattice
with respect to the intersection form. (Notice that the Cremona isometries correspond not only
to the automorphisms of X but also the isomorphisms of X, where X is considered to be a
surface parametrized by the points blown up. This fact corresponds to the fact that the Painlevé
equations are a nonautonomous mapping.) By taking a suitable basis of the orthogonal lattice,
{α1, α2, . . . , αJ }, and by regarding 〈αj 〉 and the intersection form as the root lattice and the
bilinear form respectively, it becomes the basis of an extended affine Weyl group and moreover
αj · αj does not depend on j . All the actions of these extended affine Weyl groups on 〈αj 〉 are
uniquely extended to the actions on Pic(X) as Cremona isometries. Notice that the intersection
number of αj and KX is zero, since αj · KX = αj ·∑miDi = 0. Similar to the case of the
HV equation, every discrete Painlevé equation acts on {Di} just as a permutation (this fact
follows from the uniqueness of decomposition of the anti-canonical divisor and the definition
of Cremona isometry).

The group of Cremona isometries of X is isomorphic to the extended affine Weyl group
and each element can be realized as a Cremona transformation, i.e. birational mapping, on
P

2. Each of the discrete Painlevé equations corresponds to a translation of the extended affine
Weyl group.

The Cartan matrixes of these affine Weyl groups are symmetric and −KX becomes the
canonical central element (and also becomes δ, see sections 6.2 and 6.4 in [17]). Hence the
action of the Painlevé equation on the orthogonal lattice 〈αj 〉 is expressed as

(α1, α2, . . . , αJ ) �→ (α1 + k1KX, α2 + k2KX, . . . , αJ + kJ KX) (16)

where kj ∈ Z and
∑

kj = 0.

Lemma 4.1. Let X, Di and αj be as mentioned above. The formula

rank〈D1, . . . , DI , α1, . . . , αJ 〉 = 9

holds with respect to the rank.
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Proof. Notice that {D1, . . . , DI } or {α1, . . . , αJ } are linearly independent. Suppose∑
diDi +

∑
rj αj = 0, where di, rj ∈ C. We have F := −∑ diDi = ∑

rj αj ∈ 〈Di〉 ∩ 〈αj 〉.
Since F is an element of 〈Di〉, αi · (

∑
rj αj ) = 0 holds for all 1 � i � J . Here the Cartan

matrix of the Weyl group is C := (ci,j )1�i,j�J :

ci,j = 2αi · αj

αi · αi

and αi · αi does not depend on i. Hence it implies

Cr = 0 (17)

where r = (r1, . . . , rJ ). The corank of a Cartan matrix of affine type is 1. Hence we obtain
F ∈ ZKX. This implies the fact that the corank of 〈D1, . . . , DI , α1, . . . , αJ 〉 is 1. �

Let E9 be an exceptional curve, where ‘9’ means the last blow-up.

Lemma 4.2.

{D1, . . . , DI , α1, . . . , αJ , KX, E9}
is a basis of Pic(X).

Of course these elements are not independent.

Proof. Suppose E9 = ∑
diDi +

∑
rj αj , where di, rj ∈ C. Multiplying this equation by KX,

we find −1 = 0. The claim of the lemma follows from lemma 4.1. �
Let T be a discrete Painlevé equation. Since T acts on {Di} just as a permutation, there

exists l such that T l acts on {Di} as the identity.

Lemma 4.3. There exist integers z1, z2, . . . , zJ such that

T l(E9) = E9 +
∑

zj αj

holds.

Proof. Notice that E9 has an intersection with only one of {Di} and without loss of generality
we can assume E9 · D1 = 1. The system of equations T l(E9) · D1 = 1, T l(E9) · Di = 0 (i =
2, . . . , I ) is linear. Hence the solutions of this system are T l(E9) = E9 +

∑
Cαj . Of course

T l(E9) must be an element of Pic(X) and therefore the coefficients must be integers. �
By (16), lemmas 4.2 and 4.3 the action of T l on Pic(X) is expressed as

d1D1 + · · · + dI DI + r1α1 + · · · + rJ αJ + kKX + eE9

�→ d1D1 + · · · + dI DI + (r1 + ez1)α1 + · · · + (rJ + ezJ )αJ

+(k + lr1k1 + · · · + lrJ kJ )KX + eE9

where di, rj , k, e ∈ Z. This action is written by the matrix

A :=




1
. . .

1
1 z1

. . .
...

1 zJ

lk1 · · · lkJ 1
1




(18)

where a blank means 0.
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The matrix As , where s ∈ N, is

As :=




1
. . .

1
1 sz1

. . .
...

1 szJ

slk1 · · · slkJ 1 ∗s

1




(19)

where ∗s = 1
2 s(s − 1)

∑
lkj zj .

Let us start with E ∈ Pic(X) and let d1D1 + · · · + dI DI + r1α1 + · · · + rJ αJ + kKX + eE9

be an expression of E . We obtain the following theorem.

Theorem 4.4. For all discrete Painlevé equations the order of degree of the nth iterate is (at
most) O(n2).
Proof. The degree of the Painlevé equation T as a birational mapping of P

2 coincides with
the coefficient of E in T n(E) as an action on Pic(X). Because the coefficients of

T sl(E) =
∑

i

diDi +
∑

j

(rj + szj e)αj +

(
sl
∑

j

kj rj + k + 1
2 s(s − 1)le

∑
j

kj zj

)
KX + eE9

(20)

where n = sl, increase at most with the order s2, the coefficient of E also increases at most
with O(n2). �
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